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Ruminant production systems are important producers of food, support rural communities and culture, and help
tomaintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these
systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi-
fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights
into the complexity underlying the relationships between climate change, management and policy choices, food
production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant
systemsmodeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate
change and 2) provides ideas for enhancingmodeling to fulfil this role. Many grasslandmodels can predict plant
growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland
quality and the impact of management changes requires further development. Current livestockmodels provide
a good basis for predicting animal production; linking these with models of animal health and disease is a prior-
ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants
from livestock farms, and to support the management decisions of farmers from environmental and economic
standpoints. Other models focus on how policy and associated management changes affect a range of economic
and environmental variables at regional, national and European scales. Models at larger scales generally utilise
more empirical approaches than those applied at animal, field and farm-scales and include assumptions which
may not be valid under climate change conditions. It is therefore important to continue to developmore realistic
representations of processes in regional and global models, using the understanding gained from finer-scale
modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap-
plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De-
veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer
links between modelers and experimental researchers, and also requires knowledge-sharing and increasing
technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model
development and application is vital for the creation of relevantmodels, and important in reducing problems re-
lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and
other stakeholders under climate change will require collaboration within adequately-resourced, long-term
inter-disciplinary research networks.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The world's livestock production systems are facing unprecedented
challenges – the need to reduce greenhouse gas (GHG) emissions, cur-
rently estimated to represent 15% of global anthropogenic emissions
(Ripple et al., 2014), to adapt to global climatic and socio-economic
changes (Soussana, 2014; Thornton, 2010), to provide ecosystem ser-
vices, and to meet the expected rapid increase in demand for meat
and dairy products resulting from changes in human diets in the devel-
opingworld (Tilman and Clark, 2014). In order to avoid significant envi-
ronmental costs, these goals must be reached through increased
production efficiency to avoid further encroachment of agriculture
into pristine natural ecosystems (Popp et al., 2014).

Several major global and European reports have mapped the strate-
gic research areas in which progress is required to overcome the chal-
lenges to livestock production systems (ATF, 2013, 2014; FACCE-JPI,
2012; Soussana, 2014). All highlight the need for research that takes ac-
count of interactions between agricultural systems, between these sys-
tems and natural ecosystems, and between strategic policy choices and
on-farm management decisions.

Assessments of how climate change, policy,management, and socio-
economic factors impact livestock production, require anunderstanding
of complex systems beyond that possible through direct analysis of em-
pirical data. In this respect, mathematical modeling has an essential role
in the process of developing production systems capable of overcoming
the multi-faceted problems described (Graux et al., 2013; Kipling et al.,
2014). The aforementioned strategic research agendas represent chal-
lenges that the livestock and grassland modeling community must ad-
dress if it is to play the role required of it by society (Scholten, 2015).

For modelers of ruminant production systems, the complexity of
farm-scale interactions creates a major challenge for the scaling up of
‘animal’ and ‘field’ scale modeling to the national, regional and global
levels most relevant for policy makers. A range of modeling approaches
has been applied to European ruminant livestock systems and their var-
ious components (Box 1) with a number of technical reviews providing
comprehensive comparisons of a range of models, for example
(Holzworth et al., 2015; Snow et al., 2014; Tedeschi et al., 2014).

A recent review ofmodeling of grazed agricultural systems (Snow et
al., 2014) highlighted the need for better modeling of extreme events,
animal-mediated nutrient transfers, pests, weeds and gene-environ-
ment interactions. The present paper provides a strategic overview of
ruminant production systems modeling in Europe in the context of cli-
mate change. The focus on Europe reflects the continent's large agricul-
tural sector and its importation of agricultural products, whichmake it a
major contributor to agricultural GHG emissions (Davis and Caldeira,
2010), while its recognition of the serious impacts of climate change
make it a key location for research and innovation related to food secu-
rity (Soussana et al., 2012a). The overview of ruminant production sys-
tems modeling presented here (Fig. 1) includes consideration of
stakeholder engagement in the modeling process, and the role of eco-
nomic modeling (at farm, regional and global scale). The purpose is:
1) to provide an overview of how current ruminant systems modeling
supports the efforts of stakeholders and policymakers to predict, miti-
gate, and adapt to climate change and 2) to provide ideas about how
modeling resources can be enhanced to best meet these challenges.

In relation to climate change, models of ruminant systems can be di-
vided into those that focus on the impacts of climate change on such
systems (Section 2), and those that focus on emissions of GHGs from
them (Section 3). At the regional and global levels, economic modeling
seeks to gain an overviewof both of these processes and the interactions
between them, in order to inform policy choices (Section 4), while en-
gagement with stakeholders is essential to ensuring that modeling has
a positive real-world impact (Section 5). Section 6 considers how best
to overcome the challenges to the integration of these different aspects
of modeling, and recommends some priorities for action.

2. Modeling the impacts of climate change on ruminant livestock
systems

Climate change is expected to have a range of impacts on ruminant
production systems, including the direct effects of changing conditions
on grass and feed crop production (such as changing yields and quality)
and livestock health (such as increased heat stress) and indirectly, for
example through impacts on livestock pathogens, and pests affecting
grasses and other crops. Section 2 explores some of the main climate
change impacts and the state of modeling in relation to each.

2.1. Modeling livestock pathogens and disease

Climate change has already affected patterns of livestock disease
(Kenyon et al., 2009; Purse et al., 2005; Wilson and Mellor, 2008), and
further changes are predicted (Fox et al., 2015, 2011; van Dijk et al.,
2008). A variety of climatic factors influence pathogen survival and de-
velopment, includingmoisture, temperature andUV levels (Chaparro et
al., 2011; O'Connor et al., 2006; Stromberg, 1997; van Dijk et al., 2009).
These variables affect spatial distribution, parasite and disease intensity,
and seasonal patterns of infection (Fox et al., 2011). Climate changewill
not influence all pathogens equally. Vector-borne parasites are especial-
ly sensitive to climate, as vector lifecycles and vectorial capacity are
strongly influenced by abiotic conditions (Purse et al., 2005; Wilson



Box 1

Description of technical aspects of agricultural models including the characteristics of the modeling areas described in this paper.
Empirical and mechanistic modeling: Empirical models derive from fitting statistical functions to experimental response data. Their accuracy is
dependent on the characteristics of the datasets used to define the modeled relationship. They can be used to predict new conditions as deter-
mined by changes in the variables considered. However, they cannot respond to changes which might affect the nature of the statistical rela-
tionships they are based on. Empiricalmodelsmay therefore provide inaccurate predictionswhen the values of themodeled variables are beyond
the range for which the relationship was tested. Mechanistic approaches model the underlying mechanisms that drive observed empirical rela-
tionships, and can therefore reveal and explain unexpected systemic responses to future change. However, they cannot predict changes arising
from the effects of un-modeled processes, which may become relevant under altered systemic conditions. In some cases, the variables used to
derive empirical models can incorporate mechanistic understanding, blurring the distinction between the two approaches. Models often use a
mixture of empirical and mechanistic approaches to characterise different relationships, so that there is a continuum between relatively mech-
anistic and relatively empirical modeling.
Time and variation: Models can be dynamic, to investigate how systems change over time, or static (not considering time as a variable). They
can be deterministic (giving unique predictions) or stochastic (including random variation and reporting the dispersion as well as the predicted
value of output variables).
Scale and complexity: As scale increases so does systemic complexity, as the number of variables and interactions between them rises at an in-
creasing rate. Usingmechanisticmodels at increasing scales (fromplot or animal upwards) therefore requires increasing effort (in terms of systemic
understanding and computing power) and involves increasing uncertainty. At the same time, some processes average out at larger scales, and can
be represented by simpler functions. These factors mean that more empirical approaches are used as the scale of the modeled system increases.

Chart: Some groups of models associated with ruminant production systems, showing their scale of focus and modeling approach. Model
groups are those discussed in this paper, addressing aspects felt to be most relevant in the context of climate change
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and Mellor, 2008). Climate change is also having profound impacts on
macro-parasites (Broughan andWall, 2007; Fox et al., 2011), as survival
and development of their free-living stages are governed by tempera-
ture andmoisture availability. Despite potential for pathogen outbreaks
to compromise food security and animal welfare, there are few predic-
tions of future disease risk in livestock (Fox et al., 2012). In this context,
modeling is a vital tool for understanding how climate changewill affect
pathogen risk, supporting the development of effective prevention and
control measures.

Predictive species distributionmodels are often based on correlative
ecological niche models in which species' environmental requirements
are inferred from current geographic distributions (Elith and Leathwick,
2009; Heikkinen et al., 2006; Pagel and Schurr, 2012). Insights into the
biology of parasite dynamics should be used to improve and parameter-
ize these models, and to choose the most proximal environmental pre-
dictors (Guisan and Thuiller, 2005). Correlative modeling has already
provided projections of future risk for livestock pathogens including
vector borne Blue Tongue Virus (Tatem et al., 2003) and liver fluke,
which spends large parts of its lifecycle outside its definitive host (Fox
et al., 2011). A bottleneck for developing models for a broader range
of species is the limited availability of pathogen distribution data. Addi-
tionally, correlative models do not contain underlying dynamical pro-
cesses, rapidly accruing uncertainty when projected climate change
forces extrapolation (Fox et al., 2012). To overcome this limitation,
and to identify potential for qualitative shifts in system behaviour, a
process-based mechanistic approach is needed. Mechanistic models

Unlabelled image


Fig. 1. An overview of a ruminant production system in the context of modeling of how climate change is affected by and affects such systems. For clarity, this system does not include on-
farm arable production. Key: A = physical system including off-farm inputs and outputs (emissions included in LCA); B= on-farm system (emissions included in farm-scale modeling);
C = impacts of changes in management and its drivers; dashed lines = relationships requiring further development in models.
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are based on detailed knowledge of host and pathogen physiology and
attempt to replicate underlying mechanisms that drive species' re-
sponses to environmental variables (Robertson et al., 2003). As such
models do not rely on empirical relationships between climate variables
that may alter with climate change, they are comparatively robust
under spatio-temporal extrapolation (Dormann, 2007; Hijmans and
Graham, 2006) and can predict consequences of subtle interactions be-
tween system components under climate influence. Fox et al. (2015)
used a process-based model to demonstrate that small temperature
changes around critical thresholds can drive sudden changes in nema-
tode risk in grazing livestock. There is now a need to parameterize
such models for particular pathogens, and apply them to specific farm-
ing systems under climate change projections.

At the farm level, husbandry has a dominant influence on disease
transmission (Fox et al., 2013; Smith et al., 2009); long term predictive
models therefore need to incorporate the effects of management re-
sponses to climate change. An optimal modeling approach is likely to
combine mechanistic processes and physiological thresholds with cor-
relative bioclimatic modeling, incorporating changes in livestock hus-
bandry and disease control. Despite recent advances in statistical
methodologies, model-fitting and climate projections, progress remains
limited by the paucity of active surveillance data, and empirical data on
physiological responses to climate variables. By combining improved
empirical data and refined models with a broad view of livestock sys-
tems, robust projections of livestock disease risk can be developed.

2.2. Modeling heat stress in cattle

High and extreme temperatures, in combination with other factors
such as humidity and solar radiation, are known to cause heat stress
in a range of domestic animals, with effects on productivity, growth, de-
velopment (Collier and Gebremedhin, 2015) and reproduction (de
Rensis et al., 2015). The Temperature Humidity Index (THI) has been
widely used to explore these relationships in livestock, and tomodel ex-
pected responses to climatic change (Gaughan andHahn, 2010). THI has
some recognised limitations, including the assumption that all animals
respond to thermal stressors in the same way, and a lack of consider-
ation of other important variables (including solar radiation, wind
speed, duration of exposure) (Gaughan et al., 2012). Improved indices
have been proposed, includingTHI adjusted forwind speed and solar ra-
diation, a number of respiration rate indices and the heat load index
(Gaughan et al., 2012). Whatever the index used, climate change is ex-
pected to raise average temperatures and increase the frequency of
temperature extremes. Heatwaves are predicted to become more fre-
quent, particularly in Southern Europe and theMediterranean, with ex-
pected decreases in relative humidity away from the coasts unlikely to
offset the impacts of increased temperature (Fischer and Schar, 2010).
As a result, increases are expected in the number of days when THI in
Europe exceeds calculated thresholds for heat stress in dairy cattle
(Dunn et al., 2014; Segnalini et al., 2013).

Mechanistic models have been developed to characterise heat flows
and changes in body temperature in cattle (Thompson et al., 2014) and
thermal balance in pigs and poultry (Mitchell, 2006), while empirical
equations are used to model the negative relationship between in-
creases in THI above calculated thresholds, dairy cow milk yield and
milk composition (Bertocchi et al., 2014; Bohmanova et al., 2007;
Gorniak et al., 2014; Hammami et al., 2013; Hill and Wall, 2015) and
dairy and beef cattle mortality (Morignat et al., 2015; Vitali et al.,
2009).Models are also used to test the design of livestock housing in re-
lation to airflow and temperature (Herbut and Angrecka, 2015) and to
model the temperature effects on animals of other physical variables
such as bedding type (Radoń et al., 2014).

Although the empirical modeling of thermal comfort zones and THI
thresholds is valuable for livestock management, empirical approaches
cannot incorporate thewhole range of factors thatmodify livestock sus-
ceptibility to increasing THI, such as geographic location, production
system, breed, genotype, age, physiological and productive phase, accli-
mation state, presence and type of cooling systems, and management
(Bernabucci et al., 2010; Nardone et al., 2010) or interactions between
these variables. For ruminants, mechanistic modeling of thermal bal-
ances and heat stress needs to be linked to models of productivity and
growth, and scaled up to herd level, taking account of variation in indi-
vidual growth and performance. The impacts of rising temperatures on
livestock need to be characterised in regional and global modeling, to
better understand the economic consequences of climate change relat-
ed heat stress at a broader scale (see Section 4). In addition, more
modeling is needed to explore the impact of heat stress on livestock
water requirements (Howden and Turnpenny, 1998), given that de-
mand for water for crops is also likely to rise under climate change
(Leclère et al., 2013), putting pressure on European water resources.
There is a need to develop mechanistic models capable of identifying
the most effective adaptation options in relation to heat stress

Image of Fig. 1


28 R.P. Kipling et al. / Agricultural Systems 147 (2016) 24–37
(Lacetera et al., 2013) at farm- and policy-levels, from the exploration of
genetic approaches (Collier and Gebremedhin, 2015) to systemic
switches away from dairy cows towards more heat-tolerant livestock
such as goats in southern Europe (Silanikove and Koluman, 2015).

2.3. Modeling grassland productivity and nutritional value

Climate change impacts on grasslands are expected to vary across
Europe, withwarmer temperatures and higher rainfall extending grow-
ing seasons in the north (Höglind et al., 2013) while the risk of drought
is likely to increase in Mediterranean regions (van Oijen et al., 2014).
Grassland productivity is known to be sensitive to temperature and
water stress (Knapp et al., 2001) with impacts varying between differ-
ent plant communities (Kreyling et al., 2008; Peterson et al., 1992).

Several types of model have been applied to grassland systems
(Bellocchi et al., 2013); grassland-specific models (Kochy, 2008; Ma et
al., 2015; Wu et al., 2007) models originally developed for crops and
adapted to grasslands (Coucheney et al., 2015; Perego et al., 2013;
Williams et al., 2008), and plant functional type-based models (Chang
et al., 2013; Dury et al., 2011; Hidy et al., 2012; Waha et al., 2012). Previ-
ous modeling focussed on grassland productivity (Li et al., 2011;
Woodward, 2001), mainly characterising monospecific swards or simple
mixtures (Blackburn and Kothmann, 1989; Lazzarotto et al., 2009). Such
models do not address the need for modeling of more diverse plant com-
munities (Duru et al., 2009). Although functional classifications can sim-
plify the characterisation of plant species (Cruz et al., 2002; Jouven et al.,
2006) process-based biogeochemical models such as PaSim (Ma et al.,
2015) usually use an average vegetation when simulating mixed swards,
due to the challenges of modeling changes in botanical composition.

Although modeling of the impacts of climate change on yields from
mono-specific grassland swards is well developed (Graux et al., 2013;
Vital et al., 2013), fewer models assess the impacts of climate on nutri-
tive value, which is vital with respect to animal production. Some
models can simulate the development of nutritive value in timothy on
cut swards (Bonesmo and Belanger, 2002; Jégo et al., 2013) and on pas-
tures (Duru et al., 2010), and PaSim includes parameters relating to
sward quality, including variation in digestibility with plant age and be-
tween plant components (Ben Touhami et al., 2013). However, in gen-
eral the simulation of nutritive value is limited to species-specific
responses, with little modeling of how interactions between species af-
fect sward quality responses in multi-species grasslands. The character-
isation of physiological and genetic adaptation of grassland species to
changing conditions also requires more attention from modelers.

In addition to simulating the impacts of climate change in southern
Europe, grassland models need to characterise changes in yield and nu-
tritive value related to the expected prolongation of the growing season
in northern andhigh altitude grasslands. Adding ‘winter’modules to pro-
cess-based models of grass growth offers one solution to this challenge.
Such modules need to include the effects of changing winter conditions
on sward growth (Höglind et al., 2013; Jégo et al., 2014; Jing et al.,
2013) and to model the presence or absence of snow and the process
of hardening and de-hardening,which is particularly important for Scan-
dinavian grasslands (Höglind et al., 2010; Thorsen and Höglind, 2010a,
b). Run-off of phosphorous from grasslands is also an issue of concern
in the context of higher predicted rainfall in northern Europe. A number
of models characterise phosphorous run-off (Benskin et al., 2014) but
modeling of how this is affected by interactions between changing
weather conditions and management choices needs to be improved.

To support grassland-based agriculture under climate change, grass-
land models require improved soil-water components, and need to be
applicable to a wider range of species mixtures and management
types. The capacity of models to predict the impacts of climate change
on both yields and the nutritive value of forages needs to improve, in
order to support policy choices andmanagement decisions aimed at op-
timizing these parameters (Höglind and Bonesmo, 2002; Jégo et al.,
2013; Jing et al., 2013). Lessonsmay be learnt frommodeling developed
for non-European semi-arid grazing lands, for example relating to the
impact of grazing on erosion (Bénié et al., 2005). Integrated approaches
including environmental and socio-economic aspects of grassland sys-
tems, such as the Sustainability and Organic Livestock Model (SOL)
(FAO, 2012) demonstrate potential pathways for improving grassland
modeling in the context of climate change.

2.4. Modeling grassland biodiversity and interactions with productivity

European grasslands are often hot-spots of biodiversity (Marriott et
al., 2004) despite severe declines in species-rich grassland habitats driv-
en by agricultural intensification and land abandonment (Henle et al.,
2008). The development of the EU Biodiversity Strategy to 2020 exem-
plifies concern about the loss of biodiversity and related ecosystem ser-
vices (Maes et al., 2012) highlighting the importance of models that
characterise the effects of agricultural practices and climate change on
grassland biodiversity (above and below ground and including plants,
invertebrates, birds and mammals).

Decision Support System (DSS) models seek to predict the impacts
of policies (and related changes in management practices) that target
biodiversity conservation as an objective in itself. Recently, these have
included approaches which bridge the gap between detailed models
of specific sites and regional models thatmay overlookmany important
aspects of biodiversity (Johst et al., 2015;Mouysset et al., 2014). In such
models, management information and knowledge of the ecological
niches of different species or species groups are combined to predict
the biodiversity impacts of different strategies, and the economic costs
associated with achieving more favourable environmental outcomes
(Johst et al., 2015; Mewes et al., 2015). Designed to characterise differ-
ent management strategies and conditions, they could potentially be
adapted to include the impacts of climate change on biodiversity
(Johst et al., 2015; Mewes et al., 2015). Lee et al. (2010) addressed cli-
mate change related issues directly, combining empirical models with
projections of future CO2 and nitrogen deposition to identify areas
where grassland productivity may increase and biodiversity decrease.

Bio-economic optimisation models have also been applied to inves-
tigate howpolicy changes and subsequentmanagement decisions could
affect biodiversity (Mouysset et al., 2014; Schönhart et al., 2011). This
can be achieved by including biodiversity as a target in multi-objective
models, by assessing the impacts on biodiversity of choices made to
meet other objectives, by including limits to biodiversity damage as
constraints, or by including agrobiodiversity (such as mixed cropping)
in management options (Allen et al., 2014). Nelson et al. (2009) used
a spatially explicitmodel of land use change in Oregon (USA) to demon-
strate a positive relationship between biodiversity and ecosystem ser-
vices, and to show how a trade-off between these characteristics and
commodity production could be alleviated using payments for carbon
sequestration. This type of model can be applied to increase under-
standing of howmanagement choices relating to climate changemitiga-
tion and adaptation impact biodiversity as well as productivity.

While the aforementioned models consider trade-offs between pro-
duction and biodiversity treated as a goal in itself, biodiversity can also
be viewed in terms of its contribution to productivity. This is the context
in which (plant) biodiversity is considered in the grassland models de-
scribed in Section 2.3. The positive relationship between biodiversity
and a range of ecosystem services (Isbell et al., 2011; Oliver et al.,
2015) provides a framework for a more ‘holistic’ quantification of the
value of biodiversity, beyond its direct relationship with productivity.
Modeling grassland biodiversity under different managements and en-
vironmental conditions requires a formalization of the role of mecha-
nisms of plant species coexistence (Chesson, 2000), and their impacts
on community structure (HilleRisLambers et al., 2012). Somemechanis-
tic models of plant community dynamics include the explicit simulation
of plant growth, development, and competition among species
(Soussana et al., 2012b) including developmental plasticity in plant
morphology arising from interaction with neighbours (Maire et al.,
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2013). Studies of biodiversity in permanent grasslands have often fo-
cussed on this sub-plot scale, but do not consider how the landscape
context affects biodiversity (Zobel, 2015). This would require compara-
tive studies of local communities along broad-scale environmental gra-
dients and in different biogeographic regions (Lessard et al., 2012). At
this larger scale, detailed plant competition models are not feasible,
being complex and difficult to initialize and parameterize. This explains
the simplified treatment of these processes in larger scale models (see
Section 2.3) achieved, for example, by identifying a main plant species
and representing the others implicitly as a single competing species
(Soussana et al., 2012b).

Principles have been developed for bridging the gap from small-
scale mechanistic modeling to whole community approaches
(Confalonieri, 2014), and there are opportunities to learn from model-
ing of crop systems (Balbi et al., 2015) and from techniques applied in
other modeling disciplines. Tixier et al. (2013) consider the use of eco-
logical network modeling approaches to enable multi-scale explora-
tions of the impacts of environmental and management change on
biodiversity and productivity. Examples include the use of linked crop
and foodwebmodels to quantify feedbacks between cropmanagement
and pest-predator interactions, thus addressing trophic relationships
which are often overlooked (Tixier et al., 2013).

The modeling of grassland biodiversity can help to capture important
non-commodified benefits of livestock systems. Ignoring such benefits
can lead to sub-optimal policy and management decisions (Meier et al.,
2015). Given thepressure to increase agricultural production andefficien-
cy under climate change, ensuring that biodiversity impacts are incorpo-
rated into models used to advise decision-makers is vital. To achieve this
with an increasing level of sophistication will require new research and
empirical data, particularly in poorly understood but highly important as-
pects of biodiversity, such as its role in soil dynamics (Lemaire et al.,
2005). Modeling complex multi-scale agri-ecosystems can reveal hidden
relationships and improve policy and management choices (Allen et al.,
2014; Tixier et al., 2013). In the context of climate change, and its poten-
tial impacts on ecosystem services, this capability is essential.

3. Modeling GHG emissions from ruminant systems

3.1. Farm-scale GHG emissions

On-farm GHG emissions are most often modeled using the IPCC
(2006) methodology, in which emissions factors are defined according
to ascending levels of detail (Tiers 1, 2 and 3). Tiers 1 and 2 use empirical
emission factors, standardised across countries (Tier 1) or using country-
specific variables which better represent aspects of farming technology
(Tier 2). Tier 3 models usually represent a change in approach from em-
pirical tomechanisticmodeling. For the construction of emission invento-
ries, Tier 2 approaches are adequate, while for on-farm purposes the data
demands of complex Tier 3 type models make simpler approaches more
useable. However, the applicability of empirical Tier 1 and 2 approaches
is limited by the data from which they were derived. For the estimation
of emissions factors and how changes in management affect them,
more detailed Tier 3 typemodeling is required. Themain on-farm sources
of GHGs from ruminant production systems are emissions of CH4 from
enteric fermentation and from manure, losses of NO3, NH3 and N2O
from manure management and application, and from housing, and N2O
emissions from grasslands and other soils (Gerber et al., 2013).

While Tier 2 approaches to predicting enteric CH4 emissions ignore
digestive and fermentative processes, some models allow the assump-
tion of a fixed CH4 emission per unit of gross energy intake to be re-
placed with predictions that vary with dietary characteristics such as
digestibility (Graux et al., 2011) or diet composition (Schils et al.,
2007). More mechanistic approaches including an integrated assess-
ment of digestive and fermentative aspects of enteric CH4 emissions
provide a more detailed analysis for a wider range of conditions
(Bannink et al., 2011). Predictions may include effects on nitrogen
utilisation and excreted nitrogen compounds as a source of GHG emis-
sions (Dijkstra et al., 2011).

Since emissions from one link in the manure management chain
(e.g. housing) reduce the source strength in subsequent links (e.g. stor-
age), predicting responses to changes such as the implementation of
mitigation strategies requires the use of models based on mass-conser-
vation principles (Sommer et al., 2009).Current Tier 3 type modeling of
CH4 emissions frommanure incorporates the non-linear effects of man-
agement variables (type and quantity of organic matter inputs to the
manure, manure storage type, duration and temperature) (Li et al.,
2012; Sommer et al., 2009). However, although there are complex
models of anaerobic slurry digestion (Batstone et al., 2002) – an impor-
tant mitigation option (Weiske et al., 2006) – , it is not generally incor-
porated in farm-scale models.Modeling of this process at farm-scale
should include the leakage of CH4which can significantly reduce the off-
set of GHG emissions (Miranda et al., 2015). The main sources of NH3

emissions frommanure management are animal housing, manure stor-
age and applications to land. In addition to factors affecting CH4 emis-
sions, NH3 emissions are dependent on the air temperature and
ventilation of housing and theweather conditions duringmanure appli-
cation. These factors can be mediated by management changes (e.g.
acidification of slurry, anaerobic digestion, covering manure storage,
and the use of injection equipment to apply slurry to land). The model-
ing method recommended in the Air Pollutant Emission Inventory
Guidebook (EEA, 2013) improves on IPCC Tier 1 and 2 approaches by
separately recognising housing as an NH3 emissions source. This
makes it easier to assess the efficacy of mitigation options and to syn-
thesize empirical data, as both often focus on individual emissions
sources. Tier 3 approaches, such as that of Rotz et al. (2014) (based on
the Integrated Farm System Model) enable a more nuanced investiga-
tion of the effect of manure management on NH3 emissions, which is
particularly useful when assessing relative sensitivity to climatic vari-
ables and interactions with other pollutant emissions. Nutrients in ma-
nure originate primarily from animal excreta, so are affected by the
quantity and quality of the feed ration. Estimating feed intake and qual-
ity for grazing animals remains a challenge formodelingNH3 emissions.

Mechanistic (Tier 3 type)models of N2O emissions frommanure and
soil (Li et al., 2012) are available, however, some aspects (such as pa-
rameterizing and predicting oxygen deficit in soil when require further
improvement. N2O emissions also arise from leaching of NO3 from pas-
tures, and this process has been modeled from the microcosm to the
catchment-area scale (Cannavo et al., 2008). The approach of Cichota
et al. (2013) tackles the complex spatial element of NO3 leaching from
urine patches, but further efforts are needed to represent the effect of
differentmanagement options on nitrogen dynamics, including interac-
tions with soil variables and weather conditions.

Across all areas of GHG emissions modeling, better model characteri-
sation of interactions between different components of ruminant systems
are required, in order to meet the need for more robust, flexible farm-
scale modeling of strategies to mitigate GHG emissions and adapt to cli-
mate change. One example is the need to better incorporate the impacts
of heat stress and animal disease (Sections 2.1 and 2.2) into farm-scale
models of GHG emissions. More focus is required on the simultaneous
modeling of the effect of management on carbon, nitrogen and phospho-
rus losses as exemplified by Ryals et al. (2015). Thiswould allow themul-
tiple pollutant cost effectiveness of mitigation measures to be assessed
(Eory et al., 2013) (taking into account the impacts of mitigation mea-
sures targeting one GHG source on the emissions of other pollutants).

3.2. Modeling carbon sequestration in grassland soils

Grasslands managed for ruminant production store and sequester
large amounts of carbon; in Europe, modeling studies have estimated
that there are currently 5.5 Gt of soil carbon stored in the top 30 cm of
grassland soils (Lugato et al., 2014) giving grassland carbon sequestra-
tion a potentially major role in climate change mitigation (Glaesner et
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al., 2014). The importance of soil carbon to soil quality is also being
recognised (Lugato et al., 2014) leading to increased interest in modeling
the effect of agricultural management on soil carbon stocks. Modeling of
this positive impact of grassland-based ruminant production is therefore
vital to understanding the interactions between mitigation and adapta-
tion strategies, to improving production efficiency, and to viewing farms
in the context of ‘Climate Smart Landscapes’ (Scherr et al., 2012).

The IPCC (2006) have identified Tier 3 modeling as having the
greatest potential for understanding the effect of agricultural manage-
ment and climatic and soil conditions on soil carbon. These models
could be applied to improve the current Marginal Abatement Cost
Curve analyses used to identify cost-effective measures for reducing
GHG emissions, which often make a range of assumptions in relation
to soil carbon (Leip et al., 2010; Nayak et al., 2015). They may also pro-
vide uncertainties associated with mitigation strategies and their inter-
action with climatic factors, nitrogen cycles and management practices.
Tier 3 models used range from those requiring the user to define the
monthly input of plant residues, such as RothC (Coleman and
Jenkinson, 1996) to those describing agricultural production in as
much detail as soil processes, such as SPACSYS (Wu et al., 2007) and
PaSim (Ma et al., 2015). There are also dynamic deterministic models
of soil processes, such as DNDC (Li et al., 1992) and DailyDayCent
(Parton et al., 1998),which represent crop growth using empirical func-
tions. Many of the models can be applied to a range of plant species
(Yagasaki and Shirato, 2013) and are typically verified at a small num-
ber of sites, where detailed data can be readily obtained (El-Maayar
and Sonnentag, 2009; Yagasaki and Shirato, 2014).

One of the main objectives of soil carbon modeling is to assess the ef-
fects of management and climate change across management systems
and pedo-climatic zones. For this purpose, Tier 3 models are currently
being run at regional, national, continental and global scales (Gottschalk
et al., 2012; Lugato et al., 2014). The DNDC model has also been coupled
to CAPRI to provide predictions on soil carbon at the European scale
(Britz and Leip, 2009).However, the analysiswas limited by the emissions
factor for carbon sequestration embedded in CAPRI, which assumes con-
tinual carbon sequestration by grasslands (Soussana et al., 2007, 2010).

The assumptions used in CAPRI highlight how differences in model
design, and in the level of detail at which processes are characterised,
will have an impact on the predictions produced. In order to understand
the range of possible results predicted by models, ensemble modeling
may be used (Robertson et al., 2015; Smith et al., 1997; van Oijen et
al., 2014). However, to reduce differences in the outcomes of current
modeling of carbon andnitrogen cycles,model algorithms and structure
also need to be improved in order to better characterise physical and
biophysical processes (Lu and Tian, 2013; Tian et al., 2011). Particular
challenges surround the initialization of such models, including a lack
of information about the initial state of carbon and nitrogen pools for
particular sites (limited by measuring techniques and the detailed
data and parameterisation required) (Hill, 2003) and the need to im-
prove methods such as ‘spin-up’ simulations to overcome these practi-
cal limitations (Lardy et al., 2011). The sensitivity of soil carbon and
nitrogen stocks and GHG emissions to climatic changes demands
model based integrated assessment approaches (Li et al., 1994). Proper-
ly validated process-based biogeochemical models incorporating
coupled carbon-nitrogen cycling can be effective tools for examining
the magnitude and spatial-temporal patterns of carbon and nitrogen
fluxes. However, the development and testing of such models will re-
quire more effective collection, collation and sharing of high quality ex-
perimental data (del Prado et al., 2013; Smith et al., 2002).

3.3. Environmental impacts beyond the farm

The impacts of livestock production extends far beyond the farm, in-
cluding local impacts on surrounding ecosystems andwider impacts re-
lated to theproduction and transport of purchased inputs. Themodeling
of on-farm emissions supports the identification ofmitigation strategies
that are efficient at farm level. However, approaches (such as IPCC
methodologies) which do not take into account off-farm environmental
impacts, can risk favouring systems and strategies that transfer emis-
sions to other locations, rather than reducing them (O'Brien et al.,
2012). The Global livestock environmental assessment model
(GLEAM) applies a static process-based modeling approach to assess
GHG emissions associated with meat and dairy products, incorporating
both on- and off-farm emission sources (Opio et al., 2013). GLEAM uses
Tier 2 equations and regional scale data to capture the impacts of vary-
ing local conditions not revealed by global or national average data
(FAO, 2016). Models such as GLEAM that integrate simulationmodeling
and Life Cycle analysis (LCA) approaches, offer modeling solutions that
make environmental sense at the global as well as the local scale (de
Boer et al., 2011). The development of more holistic LCAmethodologies
(Bruckner et al., 2015; Huysveld et al., 2015) and the exploration of new
LCA applications, for example as a farm decision support (DSS) tool
(Meul et al., 2014) may present further opportunities to combine
farm-scale modeling and LCA approaches. Farm-scale modelers share
many of the challenges recognised in LCA, such as the need to increase
standards and consistency of data and assumptions (Eshel et al., 2015)
and to ensure that users correctly interpret the outcomes of studies
(Cederberg et al., 2013; Meul et al., 2014).
4. Regional and global economic modeling of livestock systems

The development of economic models of livestock systems, including
modules that balance and optimise animal diets in terms of cost, has been
driven by the high share of livestock products in EU agricultural outputs,
with animal production accounting for 42% of EU-28 agricultural output
(Marquer et al., 2014), aswell as by the high cost of feed. At global and re-
gional level, models of agriculture and trade are used to explore how live-
stock production may alter in response to the impacts of climate change
on the economics of production (Audsley et al., 2015; Havlík et al.,
2014). This may include the effects of technological change, population
growth (Schneider et al., 2011), the consequences of various assumptions
about land availability (Schmitz et al., 2014), and the impact of changes in
human diet (Bajzelj et al., 2014). Modeling is also used to explore the re-
gional and global consequences of different approaches to climate change
mitigation, in order to identify optimal solutions (Havlík et al., 2014).

Results from recent modeling of European agriculture suggest that
socio-economic factors will have a greater impact than climate change
on land use, production systems and their outputs (Audsley et al.,
2006; Leclère et al., 2013). However, with respect to ruminant produc-
tion systems,most regional and globalmodels only take into account in-
direct climate change impacts, arising from changes in crop yields and
prices. Aspects not currently addressed include, the effects of increased
and extreme temperatures on livestock health and production, changes
in pathogen spread and abundance, changes in grassland yield, changes
in crop and grassland nutritional quality, competition for water re-
sources and the impact of adaptation strategies (from animal genetics
to changing management choices). Work in these areas is developing;
Chang et al. (2015) modeled changes in European grassland productiv-
ity between 1961 and 2010, while Schönhart and Nadeem (2015) used
empirical relationships between THI and animal health to estimate the
costs of climate change impacts on dairy cow productivity in Austria.
Other aspects, such as the non-commodified benefits of ruminant sys-
tems (Section 2.4) are often overlooked. Policies affect individual
farmers and their choices, making exploration of the impacts of farm-
level decisions valuable for the assessment of policy and mitigation
strategies (Eory et al., 2014). Leclère et al. (2013) demonstratedhowau-
tonomous farm-scale decision making could be incorporated into re-
gional modeling. However, their characterisation of livestock systems
focussed only on impacts of climate change stemming from changes in
crop prices and yield. Achieving a fuller representation of livestock sys-
tems in regional and global economic modeling, by increasing the
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number of variables considered, and by strengthening the basis of as-
sumptions, should therefore be a priority.

In the context of the previous discussion, modeling of climate
change impacts on livestock production still remains highly uncertain.
Developing a range of consistent future scenarios would improve
model comparability, and might allow more factors to be incorporated
into modeling. The development of such scenarios has begun (Antle et
al., 2015) however, comparisons of global economic models within
the Agricultural Model Intercomparison and Improvement Project
(AgMIP) (http://www.agmip.org) (von Lampe et al., 2014) revealed
wide inter-model variation in predictions evenwhenmodels used iden-
tical future scenarios (Nelson et al., 2014; Valin et al., 2014). Although
the uncertainty in such predictions is normal in the field of economics,
it is great compared to that usually encountered in the natural sciences.
The problem of modeling uncertainty has been tackled in climate and
cropmodeling usingmodel ensembles (Martre et al., 2015) but for eco-
nomic modeling, other improvements are needed before this approach
can be considered. Models developed to make predictions about rela-
tively stable economic environments need to be evaluated to under-
stand if they are adequate for characterising the periods of high socio-
economic uncertainty expected to accompany climate change, includ-
ing developing a better understanding of the parameters driving empir-
ically modeled relationships. Improved transparency and sharing of
methods is required for such model evaluation and improvement to
be effective. In addition to improving existing regional scale economic
models, newmodels are needed to adequately analyse complex dynam-
ic processes and uncertainty; dynamic stochastic general equilibrium
models, which could be useful in this context, are so far only applied
to financial market analyses.

5. Stakeholders and modeling

Engagement between agricultural stakeholders and modelers has
long been recognised as vital to developingmodels that can support ef-
fective farm- and policy-level decision making (Voinov and Bousquet,
Table 1
Areas of ruminant systems modeling covered in this paper, their current applications and broa

Modeling topic Current applications

Farm-scale
emissions

DSS at farm level, contributions to national emissions inventories, assess
impacts of policy

Carbon
sequestration

Contributions to inventories of carbon stocks, policy level predictions of
variation with climate & changes in land use

LCA Providing evidence to guide policy level and on-farm choices

Heat Stress DSS at farm level to support avoidance/control of heat stress, estimates o
impacts of increased THI on production & reproduction

Pathogens DSS at farm level, estimates of impacts on productivity, policy support (
of spread for specific pathogens and vectors), assessing impacts of policy

Grasslands DSS at farm level, projections of yield change under future climates at th
regional scale

Biodiversity &
ecosystems

DSS at farm level, bio-economic optimisation models including biodiver
constraints/goals, links to ecosystem services and regional impacts of po

Regional
economics

Policy level assessments of economic impacts of climate change on lives
agriculture, based on changes in crop yield and price, including changes
livestock systems land use

Stakeholder
engagement

Defining modeling scenarios and priorities (including climate change im
and relevance of modeled adaptation and mitigation strategies), use of
models for learning, community building and highlighting issues at poli
level (Sterk et al. 2011)
2010), with engagement processes involving the development of
modeling tools (participatory modeling) or the application of existing
models to solve a problem. Different approaches to stakeholder engage-
ment in the context of agricultural systems have been defined (Colvin et
al., 2014; Neef and Neubert, 2011). Martin et al. (2013) identified two
types of approach to farm system design initiatives that make use of
modeling: 1) optimisation approaches and 2) participation and simula-
tion-based approaches. These types of stakeholder engagement are con-
sistent with descriptions of ‘hard’ and ‘soft’ system approaches
(Matthews et al., 2011; van Paassen et al., 2007). Optimisation or hard
systemapproaches are positivist; theproblem to be addressed is quickly
identified and is not contested, system boundaries are identified, and
scientific data are used to generate a range of solutions, usingmodeling
tools to explore these options (Martin et al., 2013). Stakeholders are en-
gaged most in the process of understanding system parameters, pro-
cesses and inputs and outputs, but rarely in defining the problem or
evaluating solutions. In contrast, participatory or ‘soft’ system ap-
proaches emphasise the need to explore stakeholder perceptions in
order to identify problems and potential solutions, in a process of collab-
orative or collegiate engagement. This goes beyond the contractual and
consultative levels of participation (Barreteau et al., 2010) more com-
mon in optimisation approaches. Processes are based on mutual learn-
ing, from which solutions can emerge through iterative and reflective
relationships between stakeholders and researchers (Colvin et al.,
2014; Martin et al., 2013). This reflects the fact that, in addition to
being learning tools, models can play an important role in creating a
community from disparate groups of stakeholders, and in putting issues
onto the political agenda (Sterk et al., 2011). In a wider context, these
categories relate to the knowledge production practices identified by
Rodela et al. (2012) which range from ‘positivist truth-seeking’ (in
which the scientist has the role of a neutral outsider) to ‘post-normal
searches for negotiated agreement’ (in which the scientist is an advo-
cate and participant in the process).

Challenges for participatory approaches include the time and effort
required by stakeholders and researchers to engage fully in mutual
d challenges for improvement in relation to climate change.

Some broad challenges

ing Need for more Tier 3 type modeling to improve understanding of systemic
interactions, to validate empirical (Tier 1 & 2 type) relationships and to
incorporate adaptation and mitigation strategies and impacts of impaired
animal health
Improved data collation and sharing, facilitating more mechanistic (Tier 3
type) modeling of the impacts of climate change, land use change and
adaptation and mitigation options
Linking to farm-scale modeling to incorporate wider environmental impacts
into farm-scale environmental and economic assessments; standardising
assumptions and data

f Need for more mechanistic modeling of heat stress and its impacts under
climate change, incorporation of the variables affecting stress, and of
adaptation and mitigation strategies

risks Improved data on pathogen ecology and spread to facilitate more mechanistic
modeling of future impacts under climate change, outbreak intensity and
management responses

e Modeling of climate change impact on grass quality, modeling multi-species
swards, modeling impact of adaptation and mitigation strategies

sity
licy

Developing linkages to agricultural models to facilitate multi-species
modeling and to include the non-commodified value of ruminant systems in
environmental/economic evaluations

tock
in

Incorporating impacts of climate change on ruminant systems beyond
changes in feed prices/yield (e.g. impact of heat stress, increased water use,
increased disease risk, potential changes in soil carbon storage). Including
non-commodified benefits from these systems

pacts

cy

Finding approaches that overcome issues relating to the time taken for
engagement (researchers and stakeholders), scaling up lessons learnt in
specific case studies to policy level, finding ways to incorporate qualitative
values communicated by stakeholders (including the public) into modeling,
such as the social value of biodiverse landscapes

http://www.agmip.org
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learning, which can lead to ‘participation fatigue’ (Neef and Neubert,
2011) and the difficulty of generalising from tailor-made solutions to in-
form policy level decision making at a larger scale (Colvin et al., 2014).
Van Latesteijn (1999) illustrated the challenge of relating small-scale,
deep scientific findings to the large scale, wide and shallow outlook of
policymakers, with scientists required to present more simple and con-
vincing ‘facts’ about the future. Another challenges is that processes in-
cluding stakeholders often arrive at ‘exploitative innovation’ solutions,
which use existing knowledge to adjust current systems, rather than
‘explorative innovation’ solutions that facilitate novel changes (Martin
et al., 2013). The bottom-up way in which explorative innovations
emerge can challenge existing frameworks, and as a result may face in-
stitutional barriers to implementation (Colvin et al., 2014). However,
these types of innovation are important in adapting agricultural produc-
tion systems to climate change conditions (Martin et al., 2013).

In order to develop and best utilise modeling tools to support farm-
and policy-level decision-making in the context of climate change, it
will be essential for modelers to work with social scientists to identify
and apply effective approaches to stakeholder engagement, integrating
many knowledge forms and perspective (Rodela et al., 2012).If existing
models are to be available for application to real-world problems, they
need to be open to modification, ‘tested, wrapped, documented and ar-
chived’ (Voinov and Bousquet, 2010). A range of recent work contrib-
utes to building the modeling capacity required to support effective
decisionmaking in relation to climate change adaptation andmitigation
in livestock production systems. This includes, successful trans-disci-
plinary approaches to supporting agricultural systems vulnerable to cli-
mate change (van Paassen et al., 2007) and deliberative approaches to
model evaluation (Bellocchi et al., 2015).
6. Synthesis

The preceding sections demonstrate the richness and complexity of
modeling relating to European ruminant production systems, with
models applied at all scales to support stakeholders facing the chal-
lenges of climate change (Table 1). Ruminant systems aremulti-faceted,
with each component interactingwith others, and (singly and as part of
thewider systemicwhole) interactingwith other biophysical, economic
and social systems and processes. A number of broad challenges to the
Fig. 2. How the simple-complex model problem can be re-framed as an iterative d
modeling of ruminant systems in the context of climate change have
been identified here (Table 1).

Onemajor challenge for ruminant systemsmodeling is that regional
and global scale models often overlook the direct impacts of climate
change on such systems. This is of concern given the role of ruminant
systems in the provision of ecosystem services and other social benefits
(Section 2.4), and due to the interactions between livestock agriculture
and other systems. The development of socio-economic scenarios
representing consistent, realistic suites of management and policy
choices ‘packaged’ at regional level (Valdivia et al., 2013) offers a path
for better incorporating understanding of farm- and policy-level deci-
sion making into models, and for giving weight to the ‘non-commodi-
fied’ value of ruminant systems. At the same time, empirical
representations of biophysical processes and interactions in regional
and global models can be evaluated and improved using knowledge
gained from mechanistic modeling at field, animal and farm-scales. In
this respect, complex and simple modeling approaches can be seen
not in opposition, but as part of an iterative process of model develop-
ment (Fig. 2) applicable to all levels of modeling, not just the regional
level. This can allow the development of ‘smart’ empirical modules
which reduce model complexity in a robust manner, rather than
through the use of assumptions to fill gaps in knowledge.

The purpose ofmodeling is not to fully represent every aspect of real
world systems (Cederberg et al., 2013); models will always incorporate
simplification and uncertainty. Rather, their value is in providing an un-
derstanding of complex systems, predicting change in such systems,
and revealing systemic relationships that would otherwise be hidden
(van Paassen et al., 2007). Modelers need to clearly present and explain
model outputs, their meaning and limitations. In turn, decision-makers
(particularly at policy level) need to develop a sufficiently good under-
standing of the realworld systemswithwhich they are dealing for them
to usemodel outputs and other evidential sources appropriately. In this
context, the interpretation of modeling results becomes a joint concern
of modelers and the users of model outputs.

Engagingwith stakeholders at all stages of research, including in the
definition of problems, is likely to increase the chances that model out-
puts and their strengths and weaknesses will be understood at a deep
rather than superficial level (Voinov and Bousquet, 2010). Through
such engagement, the required level of model complexity, accuracy
and scope can emerge from deliberative processes (Bellocchi et al.,
evelopment process. Black triangles represent the level of model complexity.

Image of Fig. 2
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2015; Colvin et al., 2014). In this respect, individuals with knowledge of
both the research and stakeholder communities can act as ‘bridges’ be-
tween different groups (Sterk et al., 2011). Social scientists are often
well placed to fulfil this role, promoting and guiding mutual learning
and facilitating the achievement of positive outcomes (Colvin et al.,
2014). The challenge formodelers is to use the process described to cre-
ate models that are both ‘user friendly’ and robust at appropriate levels
of complexity.

The disparate nature of modeling relating to ruminant systems,
demonstrated in this paper, means that there are many barriers to
achieving the types of collaborative interaction between modelers re-
quired to meet the challenge of climate change. Technical issues related
to linkingmodels are onemajor obstacle tomore joined-upmodeling of
ruminant systems. The development of modeling platforms supporting
modular approaches and utilising compatible software and coding, can
help build capacity within a highly adaptive framework (Holzworth et
al., 2015). Such systems can also facilitate the exchange of methods
and information between modeling fields and between groups within
a field, stimulate the spread of best practice, prevent duplication, and in-
crease model comparability. Strategic modeling platforms can also play
a valuable role in providing policy level advice. Livestock modelers can
look towards initiatives set up in relation to crop systems, such as
MARS (Monitoring Agricultural ResourceS) (https://ec.europa.eu/jrc/
en/mars), for examples of what is required to communicate model pre-
dictions at the European level.

Developing models of ruminant farming systems can take years,
while major decisions relating to GHG mitigation and the adaptation
of livestock systems to climate change are required urgently. Therefore,
in addition to developing newmodeling, it is important that best use is
made of existing data andmodels, ensuring that knowledge gained and
tools developed are made available to decision-makers at a range of
scales. In this context, researchers and funders need to support the de-
velopment of data sharing resources such as thosewithin the Global Re-
search Alliance (GRA) (http://globalresearchalliance.org) (Yeluripati et
al., 2015) and in projects such as the EU knowledge hubModeling Euro-
pean Agriculture for Food Security under Climate Change (MACSUR)
(http://macsur.eu). As technological capacity for data sharing and data
processing grows, it also needs to be matched by the development of
better communication between modelers and experimental and theo-
retical researchers. Such connections support modelers by facilitating
model development, but also benefit data providers, by providing a
path to demonstrate and explore the implications of their findings and
to indicate areas for future research. The development of networks
that bring together the disparate collection of disciplines relevant to
livestock systems modeling is therefore essential, both for the sharing
of current data and modeling resources, and for the development of
new modeling platforms. Barriers to inter-disciplinary working
(Siedlok and Hibbert, 2014) mean that creating structures to build
modeling capacity and share knowledge across disciplinary boundaries
requires carefully considered, coherent and long-term support from
funders and policymakers.

This paper has attempted 1) to provide an overview of how current
ruminant production systems modeling supports the efforts of stake-
holders and policymakers to predict, mitigate, and adapt to climate
change and 2) to provide ideas about how modeling resources can be
enhanced to best meet these challenges. More focussed assessments
of specific modeling fields and the priorities for their development,
would be useful in shaping priorities for future research in the context
of climate change.

7. Future perspectives

The overview of European ruminant system modeling presented
provides pointers towards the future development required across
modeling disciplines, in order to meet the challenges of climate change.
Unfolding challenges for modelers in a climate change world include 1)
better characterisation of adaptation strategies and complex biophysical
processes, 2) more modeling of interactions between the diverse com-
ponents of agro-ecosystems (including management strategies ad-
dressing different policy targets) and 3) better linkage between
animal health and disease, animal growth and nutrition, crop and grass-
land and farm- and regional-scale modelers. Four key areas need to be
addressed if the potential for agricultural modeling to help tackle the
challenges of climate change is to be properly exploited:

• Makingmodelingmore relevant to real-world problems by increasing
the accessibility, visibility and comparability of models for different
uses, and by engaging with stakeholders at all stages in modeling re-
search and development.

• Developingmodeling capacity throughmutual learning and increased
technical compatibility across modeling disciplines, and between
modelers working at different scales.

• Fostering better links between modelers and empirical researchers to
ensure that high quality data and research findings can be easily
accessed bymodelers, and thatmodeling outputs canmore effectively
inform the focus of new experimental and theoretical research.

• Ensuring that modeling outputs, their strengths, limitations and pur-
pose are understood by those that use them, recognising that achiev-
ing this will require the commitment of time and resources by both
modelers and stakeholders, including policymakers.

Within Europe and beyond, achieving progression in these areas is
an undertaking that will require coherent long-term support from
funders, policymakers, and academics across the plethora of organisa-
tions involved in the creation of inter-disciplinary research structures.
Modeling can offer vital insights into the complex interacting relation-
ships between climate change, management and policy choices, food
production and the maintenance of vital ecosystem services. Modelers,
empirical researchers and social scientists need to work together across
disciplines, in collaboration with stakeholders, to develop and make ef-
fective use of this potential.

8. Conclusion

A continuing stream of papers has been published on agricultural
modeling over recent years, with research supported by a range of glob-
al initiatives. However, the inherent complexity associated with rumi-
nant system modeling has meant that it has been less developed than
other areas such as crop modeling. In this context, the aim here has
been to provide an overview of ruminant systems modeling in Europe.
Modeling of ruminant production is currently supporting on-farm deci-
sions to minimise GHG emissions and maximise efficiency, helping to
assess and evaluate policy choices in the context of climate change,
and developing our understanding of the likely impacts of global
warming on European food production. It is hoped that the synthesis
of modeling presented here will help strengthen the basis for construc-
tive and strategic engagement between the European modeling com-
munity, non-European modelers and experimental researchers,
through initiatives such as MACSUR, AgMIP and GRA.
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